OsPHF1 regulates the plasma membrane localization of low- and high-affinity inorganic phosphate transporters and determines inorganic phosphate uptake and translocation in rice.

نویسندگان

  • Jieyu Chen
  • Yu Liu
  • Jun Ni
  • Yifeng Wang
  • Youhuang Bai
  • Jing Shi
  • Jian Gan
  • Zhongchang Wu
  • Ping Wu
چکیده

PHOSPHATE TRANSPORTER TRAFFIC FACILITATOR1 (PHF1) is known to regulate the plasma membrane localization of PHT1;1, a high-affinity inorganic phosphate (Pi) transporter in Arabidopsis (Arabidopsis thaliana). OsPHF1, a rice (Oryza sativa) gene homologous to AtPHF1, was isolated and found to regulate the localization of both low- and high-affinity Pi transporters to the plasma membrane. Three OsPHF1 allelic mutants carrying one-point mutations at the fifth WD-repeat motif and two at the transmembrane helix, respectively, showed arsenate resistance and severely reduced Pi accumulation. The data indicate that mutation of OsPHF1 results in the endoplasmic reticulum retention of the low-affinity Pi transporter OsPT2 and high-affinity Pi transporter OsPT8. Mutation of OsPHF1 also reduced Pi accumulation in plants exhibiting excessive shoot Pi accumulation due to the overexpression of OsPHR2. However, the transcript level of OsPHF1 itself is not controlled by OsPHR2. Overexpression of OsPHF1 increased Pi accumulation in both roots and shoots in a solution culture with Pi-supplied condition. These results indicate that the role of OsPHF1 is unique in the localization of both low- and high-affinity Pi transporters on the plasma membrane in rice and determines Pi uptake and translocation in rice. The similar function of PHF1 required to facilitate PHT1 transit through the endoplasmic reticulum between Arabidopsis and rice provides an example of expectations from what one would deduce from sequence comparisons to extend knowledge from Arabidopsis to crops.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigating the contribution of the phosphate transport pathway to arsenic accumulation in rice.

Arsenic (As) accumulation in rice (Oryza sativa) may pose a significant health risk to consumers. Plants take up different As species using various pathways. Here, we investigated the contribution of the phosphate (Pi) transport pathway to As accumulation in rice grown hydroponically or under flooded soil conditions. In hydroponic experiments, a rice mutant defective in OsPHF1 (for phosphate tr...

متن کامل

Restricted spatial expression of a high-affinity phosphate transporter in potato roots.

Phosphorus deficiency limits plant growth, and high-affinity phosphate transporters, of the Pht1 family, facilitate phosphate uptake and translocation. The family is subdivided into root specific, phosphate deprivation induced members and those also expressed in leaves. An antibody to StPT2, a potato root specific transporter, detected two bands (52 kDa and 30 kDa) on western blots of root plas...

متن کامل

Positive feedback regulates switching of phosphate transporters in S. cerevisiae.

The regulation of transporters by nutrient-responsive signaling pathways allows cells to tailor nutrient uptake to environmental conditions. We investigated the role of feedback generated by transporter regulation in the budding yeast phosphate-responsive signal transduction (PHO) pathway. Cells starved for phosphate activate feedback loops that regulate high- and low-affinity phosphate transpo...

متن کامل

The Phosphate Transporter Gene OsPht1;4 Is Involved in Phosphate Homeostasis in Rice

A total of 13 phosphate transporters in rice (Oryza sative) have been identified as belonging to the Pht1 family, which mediates inorganic phosphate (Pi) uptake and transport. We report the biological property and physiological role of OsPht1;4 (OsPT4). Overexpressing OsPT4 resulted in significant higher Pi accumulation in roots, straw and brown rice, and suppression of OsPT4 caused decreased P...

متن کامل

A constitutive expressed phosphate transporter, OsPht1;1, modulates phosphate uptake and translocation in phosphate-replete rice.

A number of phosphate (Pi) starvation- or mycorrhiza-regulated Pi transporters belonging to the Pht1 family have been functionally characterized in several plant species, whereas functions of the Pi transporters that are not regulated by changes in Pi supply are lacking. In this study, we show that rice (Oryza sativa) Pht1;1 (OsPT1), one of the 13 Pht1 Pi transporters in rice, was expressed abu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Plant physiology

دوره 157 1  شماره 

صفحات  -

تاریخ انتشار 2011